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Problem Set 4: Amortized Efficiency

In this problem set, you'll get to explore amortized efficient data structures and a number of their
properties. You'll design a few new data structures and explore some of the ones from lecture in
more detail. By the time you're done, you'll have a much deeper understanding of amortized effi-
ciency and just why all these data structures are so nifty.

Due Thursday, May 12th at the start of lecture.



 

Problem One: Stacking the Deque (2 Points)
A  deque (double-ended  queue, pronounced “deck”) is a data structure that acts as a hybrid between a
stack and a queue. It represents a sequence of elements that supports the following four operations:

• deque.add-to-front(x), which adds x to the front of the sequence.

• deque.add-to-back(x), which adds x to the back of the sequence.

• deque.remove-front(), which removes and returns the front element of the sequence.

• deque.remove-back(), which removes and returns the last element of the sequence.

Typically, you would implement a deque as a doubly-linked list.  In functional languages like Haskell,
Scheme, or ML, however, this implementation is not possible. In those languages, you would instead im-
plement a deque using three stacks.

Design a deque that is implemented on top of three stacks. Each of the above operations should run in
amortized time O(1).

Problem Two: Palos Altos (2 Point)
Prove that for any positive integers k and m, there is a series of operations that, starting with an empty Fi-
bonacci heap, causes the heap to have a tree of order k containing at least m nodes. This shows that, un-
like the trees in binomial heaps, there is no upper bound on the number of nodes in a tree of any order in
a Fibonacci heap.



 

Problem Three: Meldable Heaps with Addition (5 Points)
Meldable priority queues support the following operations:

• new-pq(), which constructs a new, empty priority queue;
• pq.insert(v, k), which inserts element v with key k;
• pq.find-min(), which returns an element with the least key;
• pq.extract-min(), which removes and returns an element with the least key;
• meld(pq₁, pq₂), which destructively modifies priority queues pq₁ and pq₂ and produces a single pri-

ority queue containing all the elements and keys from pq₁ and pq₂. 

Some graph algorithms, such as the Chu-Liu-Edmonds algorithm for finding minimum spanning trees in
directed graphs (often called “optimimum branchings”), also require the following operation:

• pq.add-to-all(Δk), which adds Δk to the keys of each element in the priority queue.

Using lazy binomial heaps as a starting point, design a data structure that supports all  new-pq,  insert,
find-min,  meld,  and  add-to-all  in amortized time O(1) and  extract-min in amortized time O(log  n).
Some hints:

1. You may find it useful, as a warmup, to get all these operations to run in time O(log n) by starting
with an eager binomial heap and making appropriate modifications. You may end up using some
of the techniques you develop in your overall structure.

2. Try to make all operations have worst-case runtime O(1) except for extract-min. Your implemen-
tation of extract-min will probably do a lot of work, but if you've set it up correctly the amortized
cost will only be O(log n). This means, in particular, that you will only propagate the Δk's through
the data structure in extract-min.

3. If you only propagate Δk's during an extract-min as we suggest, you'll run into some challenges
trying to meld two lazy binomial heaps with different Δk's. To address this, we recommend that
you change how meld is done to be even lazier than the lazy approach we discussed in class. You
might find it useful to construct a separate data structure tracking the melds that have been done
and then only actually combining together the heaps during an extract-min.

4. To get the proper amortized time bound for extract-min, you will probably need to define a poten-
tial function both in terms of the structure of the lazy binomial heaps and in terms of the auxiliary
data structure hinted at by the previous point.



 

Problem Four: Static Optimality (5 Points)
In Problem Set Two, you explored weight-balanced trees in the context of trie construction. Interestingly,
weight-balanced trees can also be used as nearly-statically-optimal binary search trees. As mentioned in
lecture, if the weights assigned are the access probabilities of the keys, weight-balanced trees are never
more than a factor of 1.5 off of the optimal static BST for those probabilities.

Here's a fast algorithm for building weight-balanced trees. In time O(n), compute the total sum of the
weights. Then, use the following recursive process:

• Scan from both ends of the array inward, summing up the weights as you go, until a node is found
with the optimal balance between its left and right subarrays. You can detect this by looking for a
spot where the absolute value of the weight difference increases; the spot right before that is the
optimal splitting point. (Note that not all array elements will necessarily be scanned.)

• Make that node the root of the tree, and repeat this process on the halves of the array, passing
down to the recursive calls the total weights of each subtree using the initial weight information
and the relative weights discovered in the scan.

This algorithm somewhat resembles quicksort, so it's tempting to jump to the claim that it runs in time
Θ(n log n) in the best case and Θ(n2) in the worst-case. However, this algorithm is much faster than that.

i. Prove that the above algorithm runs in worst-case time O(n log n).

In lecture, we talked about a number of wonderful theoretical properties of splay trees. How well do they
hold up in practice? How do they compare against standard library tree implementations and against
weight-balanced trees? Your task is to determine this for yourself.

ii. Download the assignment starter files from

/usr/class/cs166/assignments/ps4/

and  implement  the  PerfectlyBalancedTree,  WeightBalancedTree and  SplayTree classes.
The PerfectlyBalancedTree type represents an optimally-balanced BST (that is, a tree that's as
balanced as possible irrespective of the access probabilities). Some hints and advice:

1. Make sure not to recompute the sum of the weights in the subarrays at each level of the re-
cursion, since otherwise the runtime might degrade to Θ(n2) on some inputs.

2. Your implementation of splay trees should also never result in a stack overflow. To ensure this,
you should implement top-down splaying, a variation of splaying described in Sleator and Tar-
jan's original paper (see Section 4), which uses O(1) stack space. As with most research pa-
pers, the provided pseudocode skips a few key details, which you will need to figure out by
looking at the diagrams and through thorough testing.

3. Once you've gotten your implementation working correctly, disable debugging and crank the
optimization level all the way up by replacing -O0 -g in the Makefile with -O3 and doing a
clean build. Take a look at the times you get back – is that what you expected?

The “working set” test in the test cases uses an access pattern in which the input is broken apart into some
fixed number of blocks. At each point in time there's an “active” block and all queries are directed at ele -
ments in that block. The net access pattern is uniformly random, but at any point in time it's highly
skewed toward just a few elements.


